LA-UR -77-2456 # MASTER TITLE: COMPUTER GRAPHICS FOR EXTRACTING INFORMATION FROM DATA CONF-771042--2 AUTHOR(S): RONALD K. LOHRDING, Q-12 MYRLE M. JOHNSON, Q-12 DAVID E. WHITEMAN, Q-12 SUBMITTED TO: FOR PRESENTATION AT THE THIRD ERDA STATISTICAL SYMPOSIUM TO BE HELD ON OCTOBER 26-28, 1977 IN RICHLAND, WASHINGTON By acceptance of this article for publication, the publisher recognizes the Government's (license) rights in any copyright and the Government and its authorized representatives have unrestricted right to reproduce in whole or in part said article under any copyright secured by the publisher. The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the USERDA. los damos scientific laboratory of the University of California LOS ALAMOS, NEW MEXICO 87545 Ar. Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work and the United States Government. Notifier the United States Government. Notifier the United States Energy Research and Development Administration, nor any of their contractors, subcontractors, or their employees, nor any of their contractors, subcontractors, or their employees, makes any legal to hill year responsibility for the socure, y, completiones or unifations of any information, appearatus, product or unifations of any information, appearatus, product or pre-case disclanded, or represents that it is use would not DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED Form No. 836 St. No. 2629 1/75 UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W-7405-ENG, 36 ### COMPUTER GRAPHICS FOR EXTRACTING INFORMATION FROM DATA by RONALD K. LOHRDING MYRLE M. JOHNSON DAVID E. WHITEMAN #### Abstract This paper presents computer graphics which are useful for displaying and analyzing data. Many classical and several newly developed graphical techniques in statistical data analysis are presented for small univariate and multivariate data sets. These include histograms, empirical density functions, pie charts, contour plots, a discriminant analysis display, cluster analysis, Chernoff "faces", and Andrews' sine curves. Recent advances in data collection technology and computer data base management systems have made it imperative to utilize computer graphics for large data sets. Several innovative graphical techniques are presented to handle this situation. Spatial relationships among the data (particularly geographic data) are difficult to conceptualize. Several cartographic techniques are presented which enhance the understanding of these spatial relationships within the data. #### I. INTRODUCTION The Energy Systems and Statistics Group at the Los Alam: Scientific Laboratory (LASL) is involved in several projects with energo-related data. Some of these projects have small univariate or multivariate data sets, while others have large data sets which require data management systems for efficient data manipulation. A statistically-oriented graphics package is presently under development; numerous modules have been completed. The purpose of this package is to provide graphical techniques for the initial examination of the data. This paper uses data from several projects to demonstrate some of these techniques. In Section 2, we discuss graphical methods useful for a preliminary analysis of small data sets. In Section 3, graphical techniques which are appropriate for large data sets are presented. Finally, spatial relationships in geographic data sets are explored in Section 4. Throughout this paper, examples of computer graphics are used to illustrate the techniques. (The 35-mm color slides of computer-generated graphics shown at the conference are reproduced in black and white for this paper.) # II. PRELIMINARY DATA ANALYSIS OF SMALL UNIVARIATE AND MULTIVARIATE DATA SETS Computer graphics for a preliminary raw data analysis may include histograms. empirical distribution function plots and probability plots. The data used in this section was collected on 17 variables for each of the 50 states plus the District of Columbia. The variables and their means and standard deviations are listed in Table I. Of particular interest is the average household BYU consumption per capita (HHBTU). The histogram in Figure 1 shows that the assumption of normality may be questionable. Two graphical tests of normality are shown in Figures 2 and 3. One test uses Lillifors' test statistic; the other uses a test statistic developed by Lohrding. In the former, the normality assumption is tested by placing $(1-\alpha)100\%$ confidence bounds on the empirical distribution function (edf). The normal cumulative distribution function (cdf) with mean and variance estimated by the sample mean and sample variance is plotted. If the cdf falls outside the bounds placed on the edf, the assumption of normality is rejected at the α level of significance. In the latter, the normality assumption is tested by placing (1-a)100% confidence bounds on the normal cdf with mean and variance estimated by the sample mean and sample variance. If the edf falls outside the bounds placed on the cdf, the assumption of normality is rejected at a level of significance. In neither test is normality rejected at the 95% level of significance. A normal probability plot and a lognormal probability plot, two additional graphical techniques which may give further insight to the structure of the data, are given in Figures 4 and 5. To describe the joint relationship of HIBTU to 26 other variables (including transformations of some of the variables), a linear multiple stepwise regression procedure is used. Seventy-five percent of the variance is accounted for by the variables degree days (DEGD) and percent urban population (PCURB). The equation of the fitted linear multiple regression model is $$Y_i = 22.15$$. 8.657 $X_{2,i} + 0.328 X_{8,i}$ where $i = 1, 2, ..., 51$ $Y_i = \text{HHBTU for the } i \text{ th state } (z \text{ axis})$ $X_{2,i} = \text{DEGD for the } i \text{ th state } (x \text{ axis})$ $X_{8,i} = \text{PCURB for the } i \text{ th state } (y \text{ axis})$. TABLE I *:* 、 | | VARIANLE | | ME.AN | STANDARD
DEVIATION | |-----|----------------|--|----------|-----------------------| | 1. | н н вти | Household BTU per capita (10 ⁶) | 87.33 | 21.30 | | 2. | DEGD | Heating degree day loads $\frac{\sum_{65-Y}^{65-Y}}{365}$ o _F | 5.00 | 2.23 | | • | | (10 ³ °F) where Y = $\begin{cases} average \ daily \ ten \\ 65^{\circ} \ if \ Y > 65^{\circ} F \end{cases}$ | mp. if Y | < 65°F | | 3. | MAXT | Normal July maximum temperature (°F) | 86.41 | 5.96 | | 4. | PCAIR | Percent of households with air conditioning | 33.73 | 18.44 | | 5. | POP | 1971 population (10^6) | 4.04 | 4.36 | | 6. | FRZR | Percent of population with freezers | 32.90 | . 10.94 | | 7. | ONEP | Single individuals per housing unit | 218.63 | 271.30 | | 8. | PCURB | Percent urban population | 66.47 | 15.11 | | 9. | COML | Percent commercial sector commercial residential & commercial | 36.71 | 3.31 | | 10. | MEDIN | Median income (10 ³) | 9.17 | 1.45 | | 11. | LOWIN | Percent of family incomes below gov't poverty levels | 11.67 | 5.18 | | 12. | SINGLE | Percent of single family houses | 71.72 | 11.19 | | 13. | NEWHS | Percent of houses built since 1960 | 25,91 | 7.92 | | 14. | OLDHS | Percent of houses built before 1950 | 53.42 | 12.34 | | 15. | AVEIN | Average income per capita (10 ³) | 3.96 | .63 | | 16. | LAT | Latitude of center of the state | 39.48 | 6.44 | | 17. | LONG | Longitude of center of the state | 93.59 | 19.50 | Figure 6 shows a three dimensional graphical representation where the fitted plane and the data points are plotted. Lines are drawn from the data points to the surface to give some indication of the deviations. In a non-linear regression analysis, the equation of the fitted model is $$Y_i = 33.835 - 77.607 \left(\frac{x_{2,i}^2}{x_{3,i}}\right) + 1374.90 \left(\frac{x_{2,i}}{x_{3,i}}\right)$$ where i = 1, 2, ..., 51 $Y_i = HHBTU$ for the i th state (z axis) $X_{2,i} = DEGD$ for the i th state (x axis) $X_{3,i} = MAXT$ (maximum temperature) for the i th state (y axis). The fit of the data to the surface is shown in Figure 7. The two extreme points are Alaska and Hawaii. Several techniques are available for displaying multivariate data. We first discuss a gray-level coded correlation matrix which displays the pairwise correlations between variables. The gray level scale ranges from positive to zero to negative correlations. Frequently, such a display may be useful in directing attention to interesting variable relationships. In Figure 8, note that HHBTU is positively correlated with DEGD, LAT, OLDHS, MEDIN, and AVEIN, negatively correlated with MAXT, PCAIR, LOWIN, SINGLE, and NEWHS, and not correlated with POP, FRZF, ONEP, PCURB, COML and LONG. Another technique called Andrews' sine curves uses the standardized data as coefficients of a function involving sines and cosines of t in the range $(-\pi,\pi)$. A function involving the 17 variables was plotted for each of the 50 states plus the District of Columbia to visually cluster similar states. Relatively tight bands suggest clusters. When the original data are used, it is very difficult to separate clusters as shown in Figure 9. However, a plot of the factor coefficients from a principal components analysis in Figure 10 shows three possible clusters of states. Figures 11, 12 and 13 show the sc-called Chernoff faces for the 50 states plus the District of Columbia. Here, a facial characteristic is associated with a variable as indicated in Table II. For example, wide noses correspond to large single populations and long noses correspond to large populations. The faces for New York and California are striking because of this feature. Similarly, Alaska has a wide face because of the large HIBTU consumption per capita, whereas Hawaii has a thin face. The dendogram, a tree-like graph of non-overlapping hierarchical partitions, is another visual technique used in cluster analysis. A computer program containing eight clustering techniques (nearest neighbor, furthest neighbor, simple average, group average, median, centroid, Lance and Williams' flexible strategy, and Ward's method) is used. Initially, the data are standardized; both classical and robust standardization techniques are used. When the data are standardized by the sample mean and sample standard deviation, no noticeable peculiarities in the data structure are present. However, when the data are standardized by the trimmed mean and trimmed standard deviation, four states, New York, California, Alaska and Hawaii, are distinct from the main cluster regardless of the algorithm used. ### TABLE II | Fac | Variable | | |-----|------------------|--------| | 1. | Face Widtn | ннвти | | 2. | Brow Length | SINGLE | | 3. | Face Height | MAXT | | 4. | Eye Separation | LAT | | 5. | Pupil Position | AVEIN | | 6. | Nose Length | POP | | 7. | Nose Width | ONEP | | 8. | Ear Diameter | PCURB | | 9. | Ear Level | COML | | 10. | Mouth Length | DEGD | | 11. | Eye Slant | MEDIN | | 12. | Mouth Curvature | PCAIR | | 13. | Mouth Level | FRZR | | 14. | Eye Level | LOWIN | | 15. | Brow Height | OLDHS | | 16. | Eye Eccentricity | LONG | | 17. | Eyebrow Angle | NEWIS | #### III. LARGE DATA SETS In data analysis many of the ensuing problems can be attributed to the data itself--perhaps inaccurate, missing, too little, and recently too much. These large data sets not only create a tremendous storage problem, but challenge computer graphics for effective display techniques. The analyses considered here deal with Na ional Uranium Resource Evaluation (NURE) data. The objective of this nationwide airborne and stream sediment reconnaissance survey is to classify regions with respect to their potential mineralization. For example, in the stream sediment survey, LASL analyzes the data from five states: Wyoming, Colorado, Montana, New Mexico and Alaska. In the second year of a five-year study, LASL data bases already contain seven million words. The probability distributions of certain random variables such as thallium signals over a given geological formation of a flight line are thought to indicate uranium concentration. A technique for computing an empirical density function (edf) used to estimate a probability density function has been developed. As many as 100 of these densities, each representing a map line or transect, can be displayed simultaneously as shown in Figure 14. Since some of the edfs may be visually obscured by other edfs, the 3-D plots have been compressed into a 2-D grid plane in a lightness-darkness plot shown in Figure 15. Figure 16 is a scattergram of bismuth vs. thallium for all geological formations on one map line in the Lubbock-Plainview area in Texas. The data in the lower left-hand corner represent recent geological formations and most of the formations follow a linear trend except for the data on the right-hand side of the plot where Tl becomes constant with Bi increasing. These data belong to two older formations with known uranium mineralization. Figure 17 shows data for one geologic formation. Scattergrams such as this one are useful in identifying clusters representing misclassified geological formations data. Figure 18 shows a linear discriminant analysis displayed as a gray-level matrix useful in delineating between favorable and unfavorable regions of uranium mineralization. Each square represents 100 records (i.e., 100 seconds of gamma-ray signals on a map line) in the Lubbock area. The 23 rows represent 23 map lines. There are eight gray levels which are linearly spaced from light to dark over the interval [0,1]. The lighter shades represent low probability of favorable uranium mineralization while darker shades represent high probability of favorable uranium mineralization. Contour maps of the Lubbock-Plainview area also indicate regions where the probability of finding uranium is high. An example is shown in Figure 19. #### IV. CARTOGRAPHIC DATA SETS Maps are very useful in displaying and communicating information contained in data with spatial/geographic relationships. The figures shown are applications of cartographic techniques and have been extracted from various on-going projects. Figure 20 summarizes U.S. offshore oil and gas lease data from October 1954 - November 1976. The number of leases, the leasing years, the acreage and the producing acres through 1974 are given for individual states and regions as well as totals for all the leases. Of the total 1,940,000 producing acres, Louisiana has 1,824,000 acres and Texas has 103,000 acres. Figures 21 - 23 are for a study of the impacts of electric power generation in the West. The location of existing and proposed power plants by type for the Western and Rocky Mountain regions are shown in Figure 21. The letters represent the type of plant, i.e., coal, oil, gas and nuclear. The size of the letters indicate three levels of power generation: small, 500-999 MWe, medium, 1000-1999 MWe, and large, 2000+ MWe. The Los Angeles and San Francisco areas have a number of oil-fired plants and these areas are simply shaded. Figures 22 and 23 are maps to study pollution dispersion patterns. Figure 22 shows SO₂ concentration in Southwest Wyoming for 1985 with pollution contours drawn every 0.25 µg/m². Figure 23 shows change in length of life due to pollution in days per person. Similar graphical displays were done for exposure to suspended particulates, additional restricted activity days due to pollution and annual morbidity costs per person and per town. Figures 24 - 26 are from solar feasibility studies. The first map shows heating degree days which is the average of the high and low temperatures subtracted from a 65° base temperature for the 48 contiguous states. Simply, the colder the climate, the higher the number of heating degree days. Contrast Florida with 214 and Maine with 7511. The second map shows 1977 residential gas prices in dollars per million cubic feet by state. Gas is generally cheaper in the southern, central and Rocky Mountain regions. Note that Maine has higher prices than nearby Vermont and New Hampshire. Figure 26 shows the pattern of economic feasibility for domestic hot water under incentives provided by the National Energy Plan of April 1977 and the House Modification of that plan. Figures 27 - 34 are maps displaying energy-related data from the regional studies program. Figure 27 shows the five coal export-import regions and Figure 28 is a flow map for the export of Rocky Mountain coal. The circle represents the within region total and the thickness of the arrows represents relative amounts of export to the other four regions. Bar charts and pie charts are useful in displaying energy totals for regions or states. Production, consumption, export and negative export (import) figures are displayed in Figures 29 and 31 using shaded bars. Figure 30 uses varying sized circles to indicate production levels by region. Sections of a circle are shaded differently to indicate coal, oil and natural gas, hydro, nuclear and other and uranium production. Figure 32 shows county air quality maintenance area data for the Rocky Mountain region. An interactive composite geo-information mapping system known as GMAPS provides map data on such items as wilderness areas, ecosystem trends, locations of natural resources, etc. for selected regions in the U.S. Figure 33 shows types of coal fields and Figure 34 is a composite of coal fields with oil shale basins in three Co'rado counties. ### V. SUMMARY The computer generated graphic products described in this paper represent a variety of techniques for displaying and analyzing small univariate and multivariate data sets, large data sets and cartographic data sets. Computer graphics are useful tools for communicating information efficiently and effectively. #### **ACKNOWLEDGMENTS** We wish to thank Katherine Campbell and Mona Wecksung for the use of some of their slides, and Thomas Bement for assisting us on the cluster analysis. Melvin Prueitt supplied the 3-D plotting program, PICTURE, and Richard Bagley made the black and white hardcopy prints that are reproduced in this paper. #### **BIBLIOGRAPHY** - 1. D.F. Andrews, "Plots of High Dimensional Data," Biometrics, 28, 125-136 (March 1972). - 2. T.R. Bement, D.V. Susco, D.E. Whiteman, R.K. Zeigler, "National Uranium Resource Evaluation Program," Los Alamos Scientific Laboratory Report LA-6804-PR (May 1977). - 3. L.A Bruckner, M.M. Johnson, G.L. Tietjen, "The Analysis of Lease, Production and Revenue Data from Offshore Oil and Gas Leases," Los Alamos Scientific Laboratory paper presented at the Second ERDA Statistical Symposium, Oak Ridge, TN (October 1976). - 4. K. Campbell, "IMGPROC An Image Processing Program for CDC 6600 and 7600 Computers," Los Alamos, NM (November 1974). - 5. H. Chernoff, "The Use of Faces to Represent Points in K-Dimensional Space Graphically," Journal of the American Statistical Association, 68, 361-368 (June 1973). - 6. W.J. Conover, Practical Nonparametric Statistics (John Wiley & Sons, Inc. New York, 1974). - 7. A. Ford and H.W. Lorber, "Methodology for the Analysis of the Impacts of Electric Power Production in the West," Los Alamos Scientific Laboratory Report LA-6720-PR (January 1977). - 8. R. Gnanadesikan and J.R. Kettenring, "Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data," Biometrics, 28, 81-124 (March 1972). - 9. G.N. Lance and W.T. Williams, "A General Theory of Classificatory Sorting Strategies. I. Hierarchical Systems," Computer J., 9, 373-380 (1967). - 10. R.K. Lohrding, "Statistical Analysis and Display of Energy-Related Data," Los Alamos Scientific Laboratory paper presented at the ERDA Wide Conference on Computer Support of Environmental Science and Analysis, Albuquerque, NM (July 1975). - 11. R.K. Lohrding, "Comparative Power Studies of Some Tests of Normality," Los Alamos Scientific Laboratory Report LA-5101-MS (November 1972). - 12. R.A. Waller, E.A. Monash, and J. Lohrenz, "Some Computerized Graphic Technical Applications for Federal Mineral Lease Management Support," Los Alamos Scientific Laboratory paper presented at the First Computer Symposium, Reston, VA (March 1977). - 13. J.H. Ward, Jr., "Hierarchical Grouping to Optimize an Objective Function," J. Amer. Statist. Assoc., 58, No. 301, 236-244 (1963). - 14. M. Wecksung, R. Wiley, and K. Turner, "GMAPS User's Manual," Los Alamos Scientific Laboratory. - 15. J.W. Wood, "A Computer Program for Hierarchical Cluster Analysis," Newsletter of Computer Archaeology, 9, No. 4, 1-11 (June 1974). ### LIST OF FIGURES | Figure | | |--------|--| | 1 | Histogram of Household BTU (HHBTU) - States and D.C. | | 2 | Lillifors' 95% Confidence Bounds on the Empirical Distribution Function of HHBTU | | 3 | Lohrding's 95% Confidence Bounds on the Empirical Distribution Function of HHBTU | | 4 | Normal Probability Plot of HHBTU | | 5 | Lognormal Probability Plot of HHBTU | | 6 | 3-D Representation of a Linear Multiple Regression HHBTU Model | | 7 | 3-D Representation of a Non-Linear Multiple Regression HHBTU Model | | 8 | Correlation Matrix | | 9 | Andrews' Sine Curves of the Original Data | | 10 | Andrews' Sine Curves of the Factor Coefficients from a Principal Components Analysis | | 11 | Chernoff Faces - I | | 1.2 | Chernoff Faces - II | | 13 | Chernoff Faces - IlI | | 14 | 3-D Plot of Empirical Density Functions | | 15 | Lightness - Darkness Plot | | 16 | Scattergram of Bi vs T1 for all Geologic Formation | | 17 | Scattergram of Bi vs Tl for one Mapline | | 18 | Linear Discriminant Analysis Display | | 19 | Contour Map | | 20 | Offshore Oil and Gas Lease Map | | 21 | Map of Power Plants in the West | | 22 | SO ₂ Concentration in SW Wyoming, 1985 | | 23 | Change in Length of Life | | 24 | Heating Degree Days | | 2'5 | 1977 Residential Gas Prices | | 26 | Solar Feasibility - Domestic Hot Water | | 27 | Five Coal Export - Import Regions | | 28 | Flow Map of Regional Coal | | 29 | 1975 Regional Energy Totals | | 30 | 1975 Regional Energy Production | |----|----------------------------------| | 31 | Rocky Mountain Coal | | 32 | County Data Map | | 33 | Coal Fields | | 34 | Coal Fields and Oil Shale Basins | FIGURE 1 EMP. DIST. FNC. OF HHBTU - STATES + D.C LOHRDING'S 95 PC BOUNDS ON NORMAL C.D.F. FIGURE 3 EMP. DIST. FNC. OF HHBTU - STATES + D.C LILLIFORS' 95 PC BOUNDS ON E.D.F. FIGURE 2 FIGUE: 4 FIGURE 5 FIGURE 7 FIGURE 6 HNERGY FIGURE 8 # ANDREWS' SINE CURVES FIGURE 9 FIGURE 11 # ANDREWS' SERE CURVES CA, NY FL, IL, OH, PA, TX FIGURE 10 FIGURE 12 FIGURE 13 TL - BAL HORIZONTAL ARIS - C P S VERTICAL ARIS - HAP LINES FIGURE 15 FIGURE 14 FIGURE 16 FIGURE 19 ### LUMBORK QUADMANGLE VERTICAL AXIS - MAP LINES (1 - 23) UNREZONTAL AXIS - LONGITUDE (102 - 106) FIGURE 18 FIGURE 20 ### WSCC POWER PLANTS FIGURE 21 ### CHANGE IN LENGTH OF LIFE FIGURE 23 ### SO2 CONCENTRATION IN SW WYOMING. 1985. FIGURE 22 # Heating Degree Days FIGURE 24 # 1977 RESIDENTIAL GAS PRICES DOLLARS PER MCF FIGURE 25 ### COAL EXPORT-IMPORT REGIONS FIGURE 27 # SOLAR FEASIBILITY - DOMESTIC HOT WATER ALTERNATIVE SYSTEM - ELECTRIC RESISTANCE 10 YEAR LIFE CYCLE COSTING FIGURE 26 ROCKY MOUNTAIN COAL FIGURE 28 # 1975 REGIONAL ENERGY TOTALS PRODUCTION CONSUMPTION EXPORTS FIGURE 29 ### 1975 REGIONAL ENERGY PRODUCTION FIGURE 31 PRODUCTION CONSUMPTION EXPORTS FIGURE 30 # AIR QUALITY MAINTENANCE AREAS ROCKY MOUNTAIN STATES FIGURE 32 FIGURE 33 CORL FIGURE 10 OIL SALE STAINS 10 CORL FIGURE - OIL SALE STAINS FIGURE 34